The exterior lighting system consist of the following lamps if equipped:
The body control module (BCM) monitors three signal circuits from the headlamp switch. When the headlamp switch is in the AUTO position, all three signal circuits are open. When placed in the AUTO position, the BCM monitors inputs from the ambient light sensor to determine if headlamps are required or if daytime running lamps will be activated based on outside lighting conditions. When the headlamp switch is placed in the OFF position, the headlamp switch headlamps OFF signal circuit is grounded, indicating to the BCM that the exterior lamps should be turned OFF. With the headlamp switch in the PARK position, the headlamp switch park lamps ON signal circuit is grounded, indicating that the park lamps have been requested. When the headlamp switch is placed in the HEADLAMP position, both the headlamp switch park lamps ON signal circuit and the headlamp switch headlamps ON signal circuit are grounded. The BCM responds to the inputs by illuminating the park lamps and headlamps. When the low beam headlamps are requested, the BCM applies B+ to both low beam headlamp control circuits illuminating the low beam headlamps.
The BCM will also command the low beam headlamps ON during daylight conditions when the following conditions are met:
When the BCM commands the low beam headlamps ON, the operator will notice the interior backlighting for the instrument cluster and the various other switches dim to the level of brightness selected by the instrument panel dimmer switch.
When the low beam headlamps are ON and the turn signal/multifunction switch is placed in the high beam position, ground is applied to the BCM through the high beam signal circuit. The BCM responds to the high beam request by applying ground to the high beam relay control circuit which energizes the high beam relay. With the high beam relay energized, the switch contacts close allowing battery voltage to flow through the left and right high beam fuses to the high beam control circuits illuminating the left and right high beam headlamps.
The daytime running lamps (DRL) will illuminate the right and left low beam headlamps continuously. The DRLs will operate when the following conditions are met:
The ambient light sensor is used to monitor outside lighting conditions. The ambient light sensor provides a voltage signal that will vary between 0.2 and 4.9?€‰volts depending on outside lighting conditions. The body control module (BCM) provides a 5-volt reference signal to the ambient light sensor which is permanently grounded. The BCM monitors the ambient light sensor signal circuit to determine if outside lighting conditions are correct for either daytime running lights (DRL) or automatic headlamp system control when the headlamp switch is in the AUTO position. In daylight conditions the BCM will command the low beam headlamps ON. The low beam headlamps are the designated DRL?€™s. During low light conditions the BCM will command the low beam headlamps ON. Any function or condition that turns on the headlamps will cancel DRL operation.
When the turn signal/multifunction switch is momentarily placed in the flash to pass (FTP) position, ground is applied to the turn signal/multifunction switch. The turn signal/multifunction switch applies ground to the body control module (BCM) through the FTP switch signal circuit. The BCM then applies ground to the high beam relay control circuit. This energizes the high beam relay, closing the switch side contacts of the high beam relay, applying battery voltage to the left and right high beam fuses. Battery voltage is applied from the high beam fuses through the high beam control circuit to the high beam headlamp assemblies. This causes the high beam headlamps to illuminate at full brightness momentarily.
The front fog lamp switch is an input to the body control module (BCM) and is contained in the headlamp switch assembly. The BCM supplies voltage to the front fog lamp switch via the front fog lamp and instrument panel dimmer switch B+ circuit. When the front fog lamp switch is pressed, voltage from the B+ circuit is pulled down through the front fog lamp switch resistor. The front fog lamp resistor is part of the resistor ladder that also provides the dimming signals for the instrument panel dimmer switches. The BCM receives the voltage signal through the front fog lamp and instrument panel dimmer switch signal circuit.
The front fog lamp relay is supplied with battery voltage at all times. The front fog lamp switch signal circuit is grounded momentarily by pressing the front fog lamp switch. The body control module (BCM) energizes the front fog lamp relay by applying ground to the front fog lamp relay control circuit. When the front fog lamp relay is energized, the relay switch contacts close and battery voltage is applied through the front fog lamp fuse to the front fog lamp control circuit which illuminates the front fog lamps.
The hazard flashers may be activated in any power mode. The hazard warning switch signal circuit is momentarily grounded when the hazard warning switch is pressed. The body control module (BCM) responds to the hazard warning switch signal input by supplying battery voltage to all four turn signal lamps in an ON and OFF duty cycle. When the hazard warning switch is activated, the BCM sends a serial data message to the instrument cluster requesting both turn signal indicators to be cycled ON and OFF.
The instrument panel dimmer switch controls are located on the headlamp switch assembly and are used to increase and decrease the brightness of the interior backlighting components. When the instrument panel dimmer switch is placed in a desired brightness position, the body control module (BCM) receives a signal from the instrument panel dimmer switch and responds by applying a pulse width modulated (PWM) voltage to the hazard switch LED backlighting control circuit illuminating the LED to the desired level of brightness.
When the headlamp switch is placed in the HEAD or PARK position, ground is applied to the park lamp switch ON signal circuit to the body control module (BCM). The BCM responds by applying voltage to the park lamps, tail lamps, and license lamps control circuits illuminating the park, tail, and license lamps.
The brake pedal position (BPP) sensor is used to sense the action of the driver application of the brake pedal. The BPP sensor provides an analog voltage signal that will increase as the brake pedal is applied. The body control module (BCM) provides a low reference signal and a 5-volt reference voltage to the BPP sensor. When the variable signal reaches a voltage threshold indicating the brakes have been applied, the BCM will apply battery voltage to the left and right stop lamp control circuits as well as the center high mounted stop lamp (CHMSL) control circuit illuminating the left and right stop lamps and the CHMSL.
Ground is applied at all times to the turn signal/multifunction switch. The turn signal lamps may only be activated with the ignition switch in the ON or START positions. When the turn signal/multifunction switch is placed in either the turn right or turn left position, ground is applied to the body control module (BCM) through either the right turn or left turn signal switch signal circuit. The BCM responds to the turn signal switch input by applying a pulsating voltage to the front and rear turn signal lamps through there respective control circuits. When a turn signal request is received by the BCM, a serial data message is sent to the instrument cluster requesting the respective turn signal indicator be pulsed ON and OFF.
Automatic Transmission
With the engine ON and the transmission in the reverse position, the transmission control module (TCM) sends a serial data message to the body control module (BCM). The message indicates that the gear selector is in the reverse position. The BCM applies battery voltage to the backup lamps control circuit illuminating the backup lamps. Once the driver moves the gear selector out of the reverse position, a message is sent by the TCM via serial data requesting the BCM to remove battery voltage from the backup lamps control circuit. The engine must be running for the backup lamps to operate.
Manual Transmission
The engine control module (ECM) provides a signal circuit to the backup lamp switch which is permanently grounded. With the engine ON and the transmission in the reverse position, the backup lamp switch signal circuit is pulled low and the ECM responds by sending a serial data message to the body control module (BCM). The message indicates that the gear selector is in the reverse position. The BCM applies battery voltage to the backup lamps control circuit illuminating the backup lamps. Once the driver moves the gear selector out of the reverse position, a message is sent by the ECM via serial data requesting the BCM to remove battery voltage from the backup lamps control circuit. The engine must be running for the backup lamps to operate.
To provide battery run down protection, the exterior lamps will be deactivated automatically under certain conditions. The BCM monitors the state of the headlamp switch. If the park or headlamp switch is ON when the ignition switch is placed in either the CRANK or RUN position and then placed in the OFF position, the BCM initiates a 10?€‰min timer. At the end of the 10?€‰min, the BCM will turn off the control power output to the park lamp controls as well as the headlamp relay coils, deactivating the exterior lamps. This feature will be cancelled if any power mode other than OFF becomes active. The BCM will disable battery run down protection if any of the following conditions exist. The park or headlamp switch is placed in the ON to OFF position, and back to the ON position during battery run down protection. The BCM determined that the park or headlamp switch was not active when the ignition was turned OFF.
Additional Factors Affecting System Operation
Safety belts help keep the passenger in position on the seat during vehicle maneuvers
and braking, which helps the passenger sensing system maintain the passenger airbag
status. See “Safety Belts” and “Child Restraints” in the Index for additional information
about the importance of pr ...
Tire Pressure Light
For vehicles with the Tire Pressure Monitor System (TPMS), this light comes on
briefly when the engine is started. It provides information about tire pressures
and the TPMS.
When the Light Is On Steady
This indicates that one or more of the tires are significantly underinflated.
Stop as soo ...
Compact Spare Tire
Warning
Driving with more than one compact spare tire at a time could result in loss
of braking and handling. This could lead to a crash and you or others could be injured.
Use only one compact spare tire at a time.
If this vehicle has a compact spare tire, it was fully inflated when new; howe ...